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Abstract—A numerical solution technique by the boundary element method is developed in this
paper for the flexural vibration and buckling analysis of elastic orthotropic plates according to
Kirchhofl’s theory. The integral formulations of the problem make use of the same fundamental
solution as for the bending of orthotropic plates. An assumed unknown transverse distributed
loading, defined inside the plate domain, is introduced for representing the inertia forces of vibration
and the in-plane forces of buckling of the plate. The integral equations necessary for solving the
problem of interest, are derived from the integral representations developed earlier for the bending
analysis of orthotropic plates. A simple discretization scheme for the plate boundary and its interior
domain is adopted in this paper for establishing the integral equations thus obtained in matrix form.
After elimination of the conventional boundary unknowns, the flexural vibration or the buckling
problem of an orthotropic plate is finally reduced into an eigenvalue problem of a square matrix.
The eigenvalues and eigenvectors of that square matrix correspond respectively to the frequencies
and the deflection mode shapes of the flexural vibration problem, or to the critical loads and the
curvature mode shapes of the buckling problem. Several computational examples of vibration and
buckling problems with various boundary conditions are presented, and the numerical results
demonstrate, in comparison with some published results, a satisfactory accuracy of the proposed
method.

. INTRODUCTION

The problems of orthotropic plates encountered in engineering have attracted the attention
of many researchers, since such structural components are becoming more and more
popular due to the increased use of composite materials in modern technology (Tsai
and Hahn, 1980; Laroze and Barrau, 1987). Among the numerical techniques commonly
employed for solving practical plate problems such as bending, vibration, buckling etc., the
finite element method is now well recognized as an extremely versatile and powerful tool.
Other numerical methods have more recently been developed as alternative approaches to
treat the plate boundary-value problems. In particular, the Boundary Integral Equation
Method (BIEM), or Boundary Element Method (BEM) is increasingly becoming an
accepted numerical technique which could provide some competitive advantages over
the finite element method for the solution of some engineering problems (Banerjee and
Butterfield, 1981).

Application of boundary element methods to plate problems can be by two different
approaches, that is, the indirect method (IBEM) and the direct method (DBEM). In the
earliest work on the subject, the IBEM had been widely explored. A summary of the integral
formulations of this method can be found in the book by Jaswon and Symm (1977). It was
however on the DBEM that the most important developments have been made during the
last decade for the numerical solution of plate problems, particularly for the bending of
elastic isotropic plates (for example Bézine, 1978 ; Stern, 1979 ; Du et al., 1984). One of the
most interesting features of the DBEM approach is that the integral formulations involve
conventional boundary variables such as deflection, normal slope, bending and twisting
moment and equivalent shear force, upon which the usual boundary conditions are imposed
in Kirchhoff bending theory. Some extensions of the direct boundary element method to
bending of isotropic plates on elastic foundation, and to free vibration and buckling
problems, have more recently been accomplished by Bézine (1980, 1988), Costa and Brebbia
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(1985), and Bézine et al. (1985). Although the DBEM formulations are now well established
for thin isotropic plates, their application to the analysis of orthotropic plates has, however,
only been attempted a few times up until now. Some preliminary work seems to be that of
Wu and Altiero (1981) who proposed a solution procedure, based on the influence function
method, for the bending of anisotropic plates. Other results have been reported by Kamiya
and Sawaki (1982) for the orthotropic plate bending problem by using a simplified DBEM
formulation. More recently, Shi and Bézine (1987, 1988) developed a general numerical
solution technique by applying the DBEM for the bending analysis of Kirchhoff anisotropic
plates. As the integral formulations are derived directly from the generalized Rayleigh-
Green identity after having taken into account the possible corners on the plate boundary,
this new DBEM solution technique can be efficiently applied to treat practical bending
problems of anisotropic plates with arbitrary planforms, whatever the imposed boundary
conditions of the problem.

On the other hand, the flexural vibration and buckling problems of orthotropic plates
have not, to the author’s knowledge, yet been solved by use of the boundary element
method, at least by the DBEM technique. This is probably owing to the difficulties in
obtaining the fundamental solutions associated with the differential equations of such
problems. In fact, the implementation of BEM always necessitates an appropriate funda-
mental solution of the problem under consideration. For the vibration or buckling problem
of orthotropic plates, this fundamental solution is not known so far, and it would be quite
difficult, even impossible, to find out it for the general cases. Nevertheless, the flexural
vibration and buckling problems of orthotropic plates have been investigated by using other
methods rather than the DBEM, and one can find some interesting results in the literature.
For example, the series-type method has been employed by different authors (Dickinson,
1969 ; Narita, 1981 ; Narita et al., 1982) for studying the free vibration of orthotropic plates.
Other techniques such as the edge-function method (O'Callaghan and Studdert. 1985), and
the Lagrangian multiplier (Ramkumar et a/., 1987), have also been developed for the
solution of vibration problems. In the case of buckling analysis, Simitses and Giri (1977)
proposed a solution procedure using the modified Galerkine method to predict the critical
conditions for rotationally restrained orthotropic plates loaded by a uniform axial com-
pression. More recently, the buckling problem of an orthotropic plate under biaxial loadings
has been discussed by Tung and Surdenas (1987) for the case of simply supported boundary
conditions.

The published papers mentioned above, dealing with the vibration or the buckling
problem, are often limited to some special cases. This is because the numerical procedures
employed in those papers are almost based on the so-called series-type method which uses
the developments on series of special functions (trigonometrical functions, for instance). In
order that the prescribed boundary conditions might be more easily satisfied by the supposed
series-functions, the plate planforms and the edge conditions should be restricted to some
particular cases such as the simply-supported or clamped square plates.

In this paper, a general DBEM technique is presented for the numerical solution of
free flexural vibration and buckling problems of thin orthotropic plates. Based upon the
previous work for the bending analysis of orthotropic plates (Shi and Bézine, 1987, 1988),
the integral formulations of the vibration and buckling problems are established by utilizing
the same fundamental solution as for the bending analysis. The starting point of the solution
procedure consists in considering the inertia forces (vibration) and the in-plane forces
(buckling) of the plate as an unknown transverse loading distributed inside the plate domain.
By introduction of this unknown distributed loading into the integral representation for
the bending of orthotropic plates, one obtains three integral equations which involve the
conventional boundary variables (deflection, normal slope, bending and twisting moments,
shear force), and as well the unknown distributed loading. The numerical formulations of
the problem are carried out in this paper by a simple discretization scheme of constant
elements for both the plate boundary and its interior domain. By elimination of the
conventional boundary unknowns in the matrix formulation, one finally transforms the
vibration or the buckling problem into an equivalent eigenvalue problem of a square matrix.
The calculation of the frequencies and mode shapes of vibration, or of the critical loads
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and corresponding mode shapes of buckling can then be easily performed by determining
the eigenvalues and the eigenvectors of this derived square matrix. To illustrate the nature
of the proposed numerical method, several application examples of flexural vibration and
buckling problems are presented, including some elastic orthotropic plates with different
boundary conditions (clamped and simply-supported plates, cantilever plate, mixed con-
ditions}.

2. BASIC EQUATIONS

Consider a thin elastic orthotropic plate of uniform thickness # and with an arbitrary
planform in the Cartesian coordinate system O: xyz. Let  be the bounded domain occupied
by the plate in the coordinate Oxy-plan; its boundary is denoted by I" on which N possible
corner points 4; of abscissa 5, (i = 1,..., N) could be embodied. The two symmetry axes
of the orthotropic material are assumed to be parallel to the x- and y-axis, respectively.
The flexural rigidities of such a plate can be given by

_ER p. —_ Bk b G"
T12(1-vvy)” TR R2(0-vivy) T T 12 1)
Dyy=v\Dy; or Dyy=v,D\, D3y=D;+2D¢

Dll

where E, and E, are the Young’s moduli, v, and v, are the Poisson’s ratios along, respec-
tively, the two principal directions of the material orthotropy, and G is the shear modulus.

We will describe in the following the basic formulations of the flexural vibration and
buckling analysis of orthotropic plates according to Kirchhoff’s theory (Lekhnitskii, 1968).
Firstly, for the flexural vibration of an orthotropic plate, the problem is governed by the
differential equation:

o'W W oW W
D11‘5;4—+2D36x25y2+D22‘ay4 +Ph'a‘}"2"=0 V(x,)eQ andte(0,) (2)

where p is the mass density per unit volume of the orthotropic plate material, and W = W(x,
y, 1) represents the transverse deflection at an arbitrary point of coordinates (x, y) on the
middle surface of the plate at any moment ¢ during the vibration motion. When the plate
under consideration is only undergoing the free vibrations, the deflection W(x, y, 1) should
be a harmonic function of the time . Consequently, the deflection solution of governing
eqn (2) can be expressed in the following form

Wix, y,t) = (A coswt+ Bsin wdw(x, y) 3)

where w is the circular frequency of the plate; w(x, y) is the corresponding mode shape
(deflection) at the given instant ¢; and the constants 4 and B could be determined by the
initial conditions (the given initial deflection and the velocity of the plate, for example) of
the problem. By substituting (3) into eqn (2), one obtains the following equation for the
deflection w(x, y)

o*w o*w o*w
Duga +2Ds a7 + D gog = pho® Wiz ) ¥ (x.5) €. @

The free vibration problem should be solved by coupling the differential eqn (4) with some
suitable homogeneous boundary conditions to be given below. The solution procedure
consists of determining the deflection w(x, y) (mode shape) and the vibration frequency w.

In the case of orthotropic plate buckling, the problem can be formulated in a similar
manner. Suppose that the plate under consideration is subjected to the in-plane forces N,,
N, and N,,, directed to the x-, y-axis, and clockwise respectively. According to Kirchhoff’s
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theory (Lekhnitskii, 1968), the deflection function w(x, y), resulting from the in-plane forces
above, should satisfy the following differential equation

D 64w+2D &tw +D 0“w__N &w Y éw v éw Ve e (5
Hoaxt T ax? dy? 298 T e T ey A éy? % e )

For the classical buckling analysis, we have to determine a critical buckling load N_, for
which the orthotropic plate is in a critical state of equilibrium with the corresponding mode
shape w(x, y). Generally, we suppose that the given in-plane forces N,, N, and N, maintain
respectively a ratio a,, 4, and a,, with respect to the critical load N, i.e.

N: = Ncraxs Nv = Ncray and ‘?\‘rvy = cra.xy' (6)

Then, the differential eqn (5) can be rewritten as follows

d*w 0w o*w & w &w 8w
D5 +2D355335+Dns5=N a5 +2a,— +a. -~ V(e
Hax? + D33x2 oy? +02 ay* "\ % 32 +od cx oy ta, ay? (e (D

For the sake of simplicity, we introduce the differential operator ¥(.) defined in the
interior domain Q by

() a*(.) )
ox* +2D; ax?ay? +D éy?

T(-)=Dn

Vix,y)ell 8)

Furthermore, we introduce an equivalent force g{x, y) for representing the inertia force of
vibration (phw?w) in eqn (4), or the in-plane forces of buckling in eqn (7) :

q(x,y) = 4 P(w) %

where PP(.) is an operator depending on the deflection function w(x, ¥), and 415 an unknown
constant, defined by

Pw) =w, i= pho® (10)
for the vibration problem ; and
0*w ow &w
=g, 27 ~ 2 ya, -, Ai=N, i
P(w) = a, p +2a,, axdy +a, BE A=N, (11

for the buckling problem. Note that in the buckling problem, the operator P(.) represents
in fact the curvatures of the deformed orthotropic plate.

By employing the operator (8) and the definitions (10) and (11), one can recast the
differential equations of vibration (4) and of buckling (7) in the same simplified form as
follows

Ywx, p)] = 4-Plw(x,»)] Y(xy)eQ. (12)

Whether the problem is one of vibration or of buckling, the deflection w(x, y) should
satisfy some homogeneous boundary conditions at the plate edges. Within the framework
of Kirchhoff’s theory, these boundary conditions can be commonly grouped in the following
forms:

—clamped edge:
w(x,y) =0, O,[w(x,»)]=0 V(x,y)el (13)
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—simply-supported edge:
W(x,}’) =0, MR[W(X,)’)} =0 V(x,y)el" (14)

—free edge:
M, w(x, )] =0, V,[wx,n]=0 V(x,yel (15)
where ©,(.), M,(.) and V,(.) represent the operators defined on the boundary I' which
correspond respectively to the normal slope, the bending moment and the equivalent shear

force. With the addition of twisting moment operator T,(.), those boundary operators can
be generally defined as (Shi, 1989):

a(.) a(.) o(.)

LA P e b 1
0,() n cos & p +sina 3 (16)
2 2 82()
M, ()= —| (D cos*a+D,ysin’a) Ep:
() 2()
+4D665macosaa +(D,cos’ a+D,, sin’ @) 3 {an
L -, 80
Vo(.) = —qcosa[D,;(1+sin*a)—D,,sin’a] P
2°()
+sina[D ,(1+cos? a) +4Dgs sin’a— D, cos? a] 3y
()
+cosa[D,,(1+sin? @) +4Dgs cos® a— Dy, sin? oz]a 3
2°()
+sina[D,,(1+cos?a) — Dy, cos? a] P (18)

. () . 8%(.)
T.()=— [(D,Z«D“) sinacos x5 + 2D (cos®a—sin’a) %oy

2
+(D,y;—Dy,)cosasina ‘3)(’ )] (19)

where n represents the outward normal at a regular point of the boundary I', and a is the
angle from the x-axis to the normal n.

The problem posed by the governing eqn (12} and a couple of boundary conditions to
be chosen from (13)-(15) following the problem type (which is in fact the vibration or the
buckling problem), can be solved by using the direct boundary element method. The
application of this DBEM to orthotropic plate bending has been investigated quite fully by
Shi and Bézine (1987, 1988). Hence, in the present study of the vibration and buckling
problems, it is possible to establish the necessary integral equations by applying the rep-
resentations devised for the bending problem of orthotropic plates.

3. INTEGRAL FORMULATION

The integral formulations of plate bending problems by the DBEM solution technique
were firstly derived from the Rayleigh-Green identity, which corresponds at its origin to
the so-called bilinear form for the isotropic plates (Bergman and Schiffer, 1953). The recent
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developments of the DBEM, during the last 10 years. required an adequate treatment for
some plates having corner points at their boundary. It was just under such an impetus that
several researchers had established the generalized Rayleigh—Green identity for the bending
of isotropic plates with arbitrary planforms (for example Bézine, 1978 ; Stern. 1979). In the
case of anisotropic plates, this generalized Rayleigh-Green identity has been obtained by
Shi (1989) by applying the reciprocal theorem of linear elasticity, and application to bending
problems has been reported by Shi and Bézine (1987, 1988).

3.1. Integral equations
The generalized Rayleigh-Green identity for orthotropic plates can be expressed as
follows

f Va)w—M,(1)0,(w) + O, ()M, (w) —uV,(w)] ds + i [T, yw—uT,(w)
r iw
=J [ (w)—Pu)n]dS (20)
o

where u(x,y) and w(x,y) are two arbitrary functions which should be four times con-
tinuously differentiable inside the domain Q and three at the boundary I'; W(.) is the
operator defined by (8); and [.] represents the discontinuity jump at the N corner points
A;of abscissa s; (i = 1,..., N) at the boundary I":

[Je= Ol = Ol 21

The integral formulations of the bending problem have been obtained from the gener-
alized Rayleigh—Green identity (20) by introducing the corresponding fundamental solution
(Shi and Bézine, 1987, 1988). In the present study, if we consider the inertia force of
vibration, or the in-plane forces of buckling, as an unknown transverse loading. the problem
of interest could be then treated, according to eqn (12), as a bending one. In other words,
the integral equations of the vibration or of the buckling problem can be established by
substitution of the unknown distributed loading ¢ = AP(3) into the integral representations
previously developed for the bending analysis. Therefore, the fundamental solution, say
w(Q; P), for the vibration or the buckling problem can be the same as for the bending of
orthotropic plates, which satisfies

YW (Q;P)] =dQ;P) (22)

where Q and P represent respectively the distribution point and the source point; and
8(Q; P) is the Dirac é-function with origin at the source point P. The complete expression
of the fundamental solution w*(Q ; P) will be given in the next subsection.

In the following, we summarize the principal integral equations for the vibration and
buckling problems, governed by eqn (12) and two corresponding boundary conditions
among (13)-(15). These integral equations have been obtained simply by replacing the
equivalent loading ¢ = A+ P(w) of (9) into the bending integral representations (Shi and
Bézine, 1988).

—Boundary integral equations:

iw(P)+ J [Va(w)w — M, (w) O, (W) + O, (w) M, (w) —w’V,(w)] ds
r

+ i[[T,,(ws)w-—w’T,,(w)Li ’j w’ - AP(w)dS YPel (23)
i=1 Q
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V(W) M, (W) 8(-),,(w‘)
10,[w(P)]+ L [ B O+

ow'
M (w)— V(W)]

+Z[6T — %fir,.(w)]l xj aws’w’(w)ds VPel (29
0 A;

L) 4] 6"0

i=1

where ng is the outward normal at source point P on the boundary I'.

—Integral representation of deflection inside the domain:
w(P) = J w' e AP(w)dS—~ J [V )w— M, (w)O,(w)+0,(w)M,(w) —w'V,(w)]ds
Q r

%[[T W H)w—w'T,(w)], VPeQ (25)

i=1

The boundary integral eqns (23), (24) and the integral representation of deflection (25)
involve four fundamental variables defined on T, that is, the deflection w, the normal slope
©,(w), the bending moment M,(w) and the equivalent shear force V,(w). Two of those
boundary variables should be given by the boundary conditions to be chosen from (13)-
(15); and the two others are the conventional unknowns of the problem. Moreover, it
should be noted that the twisting moment T,(w), appearing also in the integral equations
(23)-(25) by means of the sum of jumps at the corner points 4, (i=1,...,N) on the
boundary T, is not taken as a fundamental variable in the present method. In fact, it will
be shown that the twisting moment T,(w) could be expressed in terms of w, ©,(w) and
M, (w) in the neighborhood of the corner points by the technique that we will discuss later
in the section.

For the problem of free vibration, the inertia force, denoted by ¢ = iP(w), is pro-
portional to the deflection w(x, y) since AP(w) = phw*w according to (10). So we have in
total three unknowns in eqns (23), (24) and (25) for such a problem, i.e. the two conventional
boundary unknowns, and the unknown distributed loading (inertia force) AP(w) = pho’w
inside the domain Q. However, in the case of buckling problem, the equivalent loading
g = AP(w), with P(w) defined in (11), depends on the curvature of the deformed plate.
Consequently, the integral representation (25) of deflection w(P) could not be used directly
to solve the buckling problem together with the boundary integral eqns (23) and (24). So
it is necessary to establish a supplementary integral representation which could link up the
curvature P(w) with the boundary variables w, @,(w), M,(w) and V,(w).

—Integral representation of operator P(.) inside the domain:

Note that the integral representation (25) or deflection w(P) with PeQ is sufficiently
regular and differentiable twice inside the plate domain Q. Therefore, it is possible to extend
the operator P(.) of the plate curvature, defined by (11) for the buckling problem, to the
deflection w(P) in (25). The integral representation thus obtained for the operator P(.) can
be expressed as follows

Plw(P)] =_L P(w’) - AP(w)dS— J; {PIV,(w)lw—P[M,(w)]O,(w) + P[O,(w*)] M, (w)
N
—Pw")V,(w)} ds— Z‘ [PIT.(w)lw—PW)T,.(W], VPeQ. (26)

This integral representation can be effectively considered to be valid for both the buckling
and the vibration problem, because in the case of vibration, representation (26) becomes
an identical one to that of the deflection (25) according to the definition (10) of the operator
P(.) in this case.
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The boundary integral eqns (23) and (24) together with the integral representation
(26) are sufficient to solve simultaneously the three unknowns, that is, the two conventional
boundary unknowns and the unknown distributed loading AP(w), of the problem, whether
it is a vibration or a buckling one.

3.2. Fundamental solution

The fundamental solution, also named as singular solution or Green’s function in the
literature, plays an important role in the applications of BEM technique. In the case of
orthotropic plates, this fundamental solution was found for the first time by Mossakowski
{1954). One year later, the same author also gave the fundamental solution for the bending of
anisotropic plates (Mossakowski, 1955). The solution procedure to obtain this fundamental
solution for the general case of anisotropic plates has been investigated by Suchar (1964),
by using the complex functions, for both the concentrated force and the concentrated
moment.

The fundamental solution of orthotropic plates in flexure represents the deflection
solution of an infinite plate. This infinite plate, made up of the same material as for the
orthotropic plate under consideration, is subjected to a concentrated unit force applied at
the source point P(x,, yo). Let w'(Q; P) be the deflection of the infinite plate at the
distribution point Q(x,y). Then the function w*(Q; P), say the fundamental solution,
should satisfy eqn (22):

a*w(Q; P) 3w (Q; P) *w(Q; P)
et 2D; ox? oy? + D2 oy*

Dy =0(Q; P). (27

The corresponding characteristic equation of eqn (27) can therefore be written as follows

Dyu*+2D,4*+ Dy, = 0. (28)

As shown by Lekhnitskii (1968), the algebraical eqn (28) cannot have real roots for a
homogeneous elastic plate. So one can express the four complex roots of eqn (28) in the
following form

m=d tie; and ps,=d,+ie; {(e,>0,e;>0). 29)
Three cases of the roots of eqn (28) should be discussed.

Case i, Dg > D“Dzz:
d; = dz =0

el=\/Ds-\/D§*‘D|1D22, ezm\/Dﬁ'\/D%”’DuDzz. (30)
Dy, D,

Case 2, D3 = D, D,
d] = dz = 0

D
e =e, = /Bi 3D

dy=—d, = \/DllDZZ_DB

2D>,

S (32
gy =€ = —-———*‘--—“*——Dl;gu“}—ps
22

Case 3, D% < DH.Dzzz



Vibration and buckling analysis of plates 1359

In Case 1 and Case 3 (D} # D,,D,,), the fundamental solution w*(Q; P) of eqn (27)
can be written, according to the survey of Mossakowski (1954) and Suchar (1964), in the
following form

1 2
wHQ;P) = o p— Y. [A:R(Q; P)—B,S(Q; P)] (33

i=1

where R{(Q; P) and S,(Q; P), with i = 1 and 2, are two functions given by

2 2
R(Q:P) = (x* =D [in ti :;y - 3]-4;:,. i arczani’—f (34)
x? +y'2 Yi
S(Q;P) =xy;| h—=— -3 +(x3+y,~2)arctan; (35

with x; and y; (i = 1 and 2) defined by the distribution point Q(x, y) and the source point
P (x (14 0) :

X = (x=x0)+d(y—yo), yi=ely—yo)) (i=12). (36)
The two constants 4; and B, (i = 1, 2) in the fundamental solution (33) are determined by

(di—ds)* + (= 1)'(e} —e€))

A4, = Ce, 37
B = w (38)
C
with
C=(d,—d)" +2(d, ~d;)* (e} +e3) + (e} —d)%. 39

The fundamental solution w*(Q; P) involves a normalization coefficient, =, which
appears in the functions R(Q; P) and S(Q; P). It has been proved in practice that such a
coefficient does not affect the numerica! results of the present DBEM technique. So one
can always choose that 2 = 1, for example.

In the case of D3 = D,,D,,, the fundamental solution w*(Q ; P) given in (33) becomes
an indeterminate expression. For such a case, Mossakowski (1954) has demonstrated that
the fundamental solution can be expressed as follows:

| Y2 L r )2
WS(Q;P)=m{[(x—xo)z-f-ez(y—y:’)ﬁm[(x *o) Zi » yo)]

—[3(x~Xo)"’+62(y—yo)’]} (40)

where the real coefficient ¢ is determined by

gt = 2..'..‘. [23))

D;,

The kernel functions appearing in the integral eqns (23)~(26) can be obtained by the
successive derivations of the fundamental solution w*(Q;P) given in (33) or (40). For the



1360 G. Sm1

case of anisotropic plates, the authors have given all the derivatives of this fundamental
solution from the first to the fourth order (Shi and Bézine, 1988). The fifth-order derivatives
needed in integral representation (26) for the buckling analysis will be given in the Appendix.

3.3. Treatment of twisting moment

As remarked above, the twisting moment T,,(w) is not considered, in the present DBEM
solution technique, as a fundamental variable. To evaluate the sum of jumps in the integral
eqns (23)-(26), one can always express the twisting moment T,{(w) in terms of the fun-
damental boundary variables w, ©,(w) and M, {w) in the neighborhood of corners 4,
(i=1,...,N)on the boundary I'.

In fact, the boundary operators M,(.) and T (.}, given in (17) and (19), associated with
the deflection w(x, y) can be rewritten in the following form

0w otw w

M,(w) = -~(f1 +figs + s W) 42
3w a2 Fw

T(W)--(gg it 55 ;’I'*‘gsa{ ) 43)

where t represents the tangent of the boundary I'; and the coefficients £}, /5, f; and g4, g2,
g are given by

fi1 =D, cos*a+2D;sin*acos?a+D,,sin*a

f2=[Dyysin®u—D |, cos?a+D; (cos® a—sin? a)] sin 2

fs =D+ (D, +D;,—2D3)sin* acos’ « (44)
and
= %fz
g2 = 2D +2(D )+ Dy, —2D3) sin’ acos’«
g3 = [D1;cos? a— D, sin? a— D, (cos? a—sin” a)] sin 2. (45)

By eliminating the term d°w/dn® in (42) and (43), and by employing the normal slope
operator ©,(.) given in (16), one obtains the following expression

"9()

o*w
T =7 [mM(wmg;fz —g )5 (9 s ggfa-g;i—]. 46)

After discretization of the plate boundary I' (the discretization procedure will be
described in detail in the next section), it is then possible to approximate the twisting
moment T,(w) at a corner point 4, (i = 1,..., N) by the values of M,(w), ©,(w) and w at
some nodes near this corner:

Tn (w)‘A,- -« <M,,(W), @,,(W), W> !nodal valyes* (47)

For example, we consider three boundary elements K}, K, , and X}, , of equal length / near
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Fig. 1. Treatment near a boundary corner.

the corner point 4; (i = 1,..., N) of the boundary I (see Fig. 1). The corresponding nodes
(middle point of each segment) of those three elements are designated by C;, C;,., and Cj, ,,
respectively. Consequently, one can interpolate the terms of (46) in the following way

M,(W);» = M, [w(C))] (48)
00,(w)| _ ©.[w(C;11)]1-O,[w(C))]

o | l “49)

azw] ~ w(Ciy2) =2w(Ciy1 ) +w(C)) (50)

P P 2
where s; denotes the arc abscissa at the right-hand side of the corner A4,. By substituting
(48), (49) and (50) into expression (46), the twisting moment 7,(w) at a corner point 4,
(i=1,...,N) can be finally estimated by the nodal values of M, (w), ©,(w) and w in the
neighborhood or this corner point.

4. MATRIX FORMULATION

The numerical formulations of the flexural vibration and buckling problems are mod-
elled in this paper by a relatively unsophisticated discretization scheme. The plate boundary
is partitioned with a succession of k straight elements K (i = 1, ..., k), care being taken to
locate each corner point 4; (i=1,...,N) on I' at a junction point of two consecutive
straight boundary elements. On the other hand, the plate domain is divided into m rec-
tangular surface elements M; (j = 1,...,m). In practice, the discretization of the interior
domain is carried out generally with reference to that of the boundary, so that the plate
interior domain might be approximated as best as possible by a finite number of rectangular
elements.

Only one node C; (i = 1,.., k) is defined at the middle point of each boundary element
K. the fundamental boundary variables w, ©,(w), M,(w) and ¥,(w) are supposed to be
constant along every straight element X, (i = 1,..., k), their values being those taken by
them at the node C; The nodal values of these boundary variables form the following
vectors

{w} = [w(C)), ..., w(CII” (51)
{©.} = [0,(C)),...,0,(C" (52)
M.} = [M,(C)),..., M (COIT (53)
{Va} = [Vu(C)),..... VW(COI" (54)

Similarly, we define only one node G; (j = 1,...,m) at the center of each domain element
M;. The deflection w(x, y) and the operator P(w) inside the domain Q are supposed to be
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constant over every domain element M, (j = 1,...,m), their values being equal to those
taken by them at the node G, (j = 1,...,m) of this element. Two corresponding vectors
can be defined as

{w} = [w(G),... .w (G (35)
{p} =[PGD,....PG)]" (56)

where the subscript of {w,} indicates that the deflection values are related here to the plate
domain Q.

By placing successively the source point Pe T at the & nodes of the discretized boundary,
one can establish the boundary integral equations (23) and (24) in the following matrix
form

G +[AD {(w}+BJ{O,} +[C KM, } +[D{V.} + {t:} = A[E\]{p} (57)
A {w} + G+ B {0,} +[C}{M,} + [Da}{V,} + {62} = AE:}{p} (58)

where [I] is the & xk unit matrix; {A{], {B,], {C,}. [D}] and [A;], [B.], [C,], [D,] are
eight k x k square matrices whose coefficients are calculated from the curvilinear integrals
encountered in the boundary integral eqns (23) and (24); [E,} and [E.] are two kxm
matrices whose coefficients are obtained from the surface integrals of (23) and (24) ; and
{t,}, {t,} represent the sum of discontinuity jumps encountered in (23) and (24), respectively.
By using the technique described above for the treatment of twisting moment 7,(w), one
can express the vectors {t,} and {t.} as

{t.} = [Al{w} +[B;){©,} +[C;]{M,} (z=1 and 2) (39)

where the k x k matrices [A;], [B.} and [C.], with ¥ = T and 2, can be obtained by employing
the approximations (48)-(50) for each corner point 4; (i=1,...,N) of boundary T
Substituting (59) into (57) and (58), we obtain

[AT){w} +[B1}{©,} + [CT{M.} +[D,]{V,} = A[E,}{p} (60)

[AZ){w} + [B3}{®©,} +[C:1{M,} + [D:]{V.} = A[E,}{p} (61

where

(A% = I +[A,0+1A7] [AZ] = [A,]+[A%)
(8] = [B,]+[B}] (B3] = 4[1}+[B.]+[B5]
[C1] = [C,]+[C3) [C3) = [C.}+[C3). (62)

At each node of the boundary, two corresponding values of {w}, {&,}, {M,} and {V,}
should vanish because of the two homogeneous boundary conditions chosen among (13)~
(15) following on the type of the problem. Hence for a discretization of the boundary into
k straight elements, there are in total 2k boundary unknowns, every node containing two
unknowns defined by two of the fundamental variables {w}, {®,}, {M,} and {V,}. By
removing, in (60) and (61), the terms associated with the homogeneous boundary conditions
of the problem, one can finally obtain the following system of 2k linear equations

[G}{X} = A[H]{p} (63)

where the column-vector {X} contains the 2k conventional boundary unknowns determined
from {w}, {©,}, {M,} and {V,}; [G] is a 2k x 2k matrix derived from the matrices [A],
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[B7], [C] and [D,] (x =1, 2) in (60) and (61); and the 2k x m matrix [H] is obtained by
[E,] and [E,] in (60) and (61).

In a similar manner, one ¢an write the integral representation (26) of the operator
P(w), by locating successively the source point PeQ at the m nodes G, (j = 1,...,m) of
the domain mesh, in the following matrix form

{p} = [GH{X}+[H,}{p} (64)

where [G,] is a m x 2k matrix whose coefficients are calculated. in a similar way as for
obtaining the matrix {G] in (63), from the curvilinear integrals of integral representation
(26) ; and [H,} is a m x m matrix whose coefficients are calculated from the surface integrals
encountered in (26).

To eliminate the 2k conventional boundary unknowns {X} in the matrix eqns (63) and
(64), one can rewrite (63) as follows

{X} = A[G]~ ' H]{p} (65)

where [G] ™! is the inverse matrix of [G]. By substituting (65) into (64), one obtains the
following equation

{p} = A(G,){G]~'[H] + [H,}) {p} (66)

which can be condensed in the following form

[Fl{p} = % {#} (67)

where the square matrix [F] of m x m is given by

[F] = [G,]IG] ™ '[H] + [H,]. (68)

In view of the matrix equation (67), we observe that the problem under consideration
is finally reduced into an eigenvalue problem of the square matrix [F]. The eigenvalues of
[F] (1/%) correspond to the frequencies of free vibration, or to the critical loads of the
buckling problem, and the corresponding eigenvectors of [F] (vector {p}) represent the
mode shapes of deflection (for vibration), or of the curvature (for the buckling) of the
problem.

In the case of the buckling problem, the mode shapes of deflection {w,} (the deflection
eigenvectors), corresponding to the critical load A = N_, can be obtained by using the
integral representation (25). Like that for obtaining the matrix eqn (64), one can express
the integral representation (23) in a similar matrix form as follows

{w.} = [GH{X]} +A[H.}{p} 69

where [G,] is a m x 2k matrix obtained from the curvilinear integrals of (25); and [H,] is a
m x m matrix derived from the surface integrals of (25). By substituting (65) into (69), we
obtain finally

{w.} = MGJG]~ ' H]+H,D{p}. 70

As A and {p} have been calculated by the solution of the above cigenvalue problem (67), it
is then possible to calculate, by using (70), the deflection values {w,} at the m nodal points
G;(j = 1,...,m) inside the plate domain. These deflection values {w,} define effectively the
mode shapes of the orthotropic plate in equilibrium under the corresponding critical load
N
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Fig. 2. Discretization of a square plate.

5. NUMERICAL RESULTS

We have solved, using the DBEM technique proposed above, some example problems
of the free flexural vibration and buckling of square or rectangular orthotropic plates.
Different boundary conditions imposed on the four edges of the plates are considered,
including the simply-supported edges, the clamped edges, and the mixed edge conditions,
etc. The orthotropic plates considered in the following have, in general, the elastic properties
corresponding to the graphite/epoxy material, except in some examples where the plates
are made up of special materials, The elastic constants of a graphite/epoxy material, with
the fibers directed in the x-axis direction, are given as follows (Tsai and Hahn, 1980):

E, =181GPa  E,=103GPa
G=717GPa v, =038 (1)

The flexural rigidities of such a graphite/epoxy plate with thickness # = 0.01 m can be
calculated by using {1).

The discretization of the plate boundary and its interior domain is performed with
reference to the plan forms of the plates. For example, in the case of a square plate, the
boundary is partitioned in such a way that each of the four edges be divided into 12
rectilinear segments of equal length, hence 48 boundary elements in total for all the contour
of the plate (Fig. 2). And the interior domain of the square plate is discretized into a mesh
of 7x 7 = 49 panels (Fig. 2). The discretization of rectangular plates could be carried out
just as easily in the similar way.

5.1. Flexural vibration problems
For the purpose of simplicity, numerical results for the free vibration frequencies w
will be presented in dimensionless form as follows

oas

— {72)

K, = —
vV DB/}ph

where K, is defined as a frequency parameter, and a represents the edge length of the plate
along the x-axis direction.

Example | : Simply-supported or clamped rectangular graphite/epoxy plates. The first
problem considered is that of the free vibration of rectangular graphite/epoxy plates with
their four edges simply-supported or clamped. The numerical computation is emphasized
in the calculation of fundamental (first vibration mode) frequencies of rectangular plates
with different edge ratios ¢ = a/b, where a and b are the edge lengths along the x- and y-
axis, respectively. Such a problem was studied by Lekhnitskii (1968) using the Fourier
method in the case of simply-supported edges, and the simplified Rayleigh-Ritz method in
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Table 1. Fundamental frequency parameter X, of rectangular graphite/epoxy plates

Edge ratio ¢ 0.5 1.0 1.5 2.0
DBEM 33.198  36.044 42426 53.046

Simply supported Fourier 32.861  35.787 41947 52.366
Error (%) 1.03 0.72 1.08 1.30
DBEM 74.170 77.418 87.286 107.524

Clamped Rayleigh-Ritz 73.532 76.854  86.575 106.337
Error (%) 0.87 0.73 0.82 1.12

that of clamped edges. The series-type solution (simply-supported plates) and the first-
order approximation (clamped plates) given by Lekhnitskii can be used to calculate the
fundamental frequencies of the graphite/epoxy plate.

Applying the present DBEM, we have calculated the fundamental frequencies of the
rectangular plates with various edge ratios (¢ = 0.5, 1.0, 1.5 and 2.0). The numerical results
obtained for the frequency parameter X, defined in (72), are presented in Table 1. As shown
in this Table, the values of K, obtained by the present DBEM are in excellent agreement
with the results available from the Fourier method, or the Rayleigh-Ritz method (Lekh-
nitskii, 1968), since the relative error between our DBEM and the approximate method
used by Lekhnitskii is only about 1.0% for both the simply supported and the clamped
plates.

Example 2. Square orthotropic plate clamped along two opposed edges and free along
other two edges. This example is selected from Dickinson (1969), in order to test the
performance of the proposed DBEM for the solution of free vibration problems in the
case of mixed boundary conditions. The flexural rigidities of the plate are those used by
Dickinson (1969) :

D\,/D; =1.543 D,,/D; =481 v, =0.039 (73)

Along the four edges of the square plate, the boundary conditions are applied as
follows:

—clamped along the two opposed edges parallel to the y-axis;
—free along the other two edges parallel to the x-axis (see Fig. 2).

The frequencies of the five first vibration modes are calculated using the current
DBEM. The numerical results obtained for the frequency parameter X,, defined in (72),
are given in Table 2.

A comparison of our numerical results with those given by Dickinson (1969) show a
good precision of the present DBEM, and the relative error for the values of frequency
parameter K, between the two methods varies from 1.0 to 4.0% for the five first vibration
modes.

Example 3: Square cantilever graphite/epoxy plate. For the vibration problem of a
cantilever orthotropic plate, we do not know a comparative solution available in the
literature, so we give only the numerical results obtained by the proposed DBEM.

The boundary edge x = a/2 (see Fig. 2) of the square plate is clamped, and the other
three edges are all free. We have calculated, using our DBEM, the frequencies of such a

Table 2. Frequency parameter X, of an orthotropic plate
with mixed boundary conditions

Mode (mxn) DBEM Dickinson  Error (%)
1{x1) 27.957 27.730 0.88
2(1x2) 32.139 31.634 1.57
3(1x3) 66.783 64.558 345
4(2x1) 78.345 76.404 2.54
5(2x2) 85.251 81.774 425
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Table 3. Frequency parameter K, of square cantilever graphite/epoxy plate

Mode (mxn) 1{IxD 2{1x2) I{Ix3) il =<4 52xD)

DBEM 11512 14.846 28.924 60.301 73.319

cantilever plate, and also the corresponding mode shapes. The numerical results for the
frequency parameter K,, defined in (72), are presented in Table 3 for the first five vibration
modes, and the mode shapes (deflection) from the first to the fourth vibration mode are
given in Fig. 3. As shown in this figure, the first and the third mode shapes correspond to
a symmetric deformation of the cantilever plate with respect to the x-axis; but the second
and the fourth to an anti-symmetric one.

5.2. Buckling problems
The numerical results obtained for the buckling problems of orthotropic plates will be
presented in the following in terms of the dimensionless parameter K, which is defined by

N.a?
D,

K, = (74)

where N, is the critical load, and a represents the edge length of the plate along the x-axis
direction.

The computational examples concern some square or rectangular orthotropic plates
with different boundary conditions (simply-supported, clamped, mixed). The buckling
loadings (in-plane forces) N,, N,, and N, are represented by the factors a,, a,, and a,, as
defined in (6). The signs of a,, a,, and a, depend on the type of in-plane forces ¥, ¥, and
N,. For example, if N, is a tensile force, a, > 0; and if N, is of compression, then g, < 0.

Example 4: Simply-supported square plate under different loadings. In this example,
we have applied the proposed DBEM to the solution of buckling problem of a square birch
plywood plate simply-supported along the four edges. The flexural rigidities of the plate
are (Lekhnitskii, 1968) :

Fig. 3. Vibration mode shapes (deflection) of a square cantilever graphite/epoxy plate.
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Table 4. Critical load parameter K, of a simply-supported birch plywood plate

under different loadings
Critical load parameter X,
Loadings

a, a,, a, DBEM Lekhnitski Error (%)
-1 0 0 72.828 71.457 1.92

0 -1 0 158.039 156.359 1.07

0 0 -1 49.117 47.587 3.21
-1 0 —1 36.449 35.728 2.02
-1 -1 -1 32.687 e —
-1 0 i 65.293 63.450 2.90
-1 0 -2 21.612 21.149 2.19

D,, =0.11876x 10°Nm D, = 0.98967 x 10° Nm
Dy, =045525x10°Nm Dy = 0.10000 x 10¢ Nm. (75)

The plate is subjected to different in-plane forces (uniaxial or biaxial compression,
uniform shear force, and mixed compression-tension forces, etc.) along the four edges. For
the buckling of such a plate under compression or/and tension forces, an exact solution is
available for the calculation of critical loads N,, (Lekhnitskii, 1968). In the case where the
plate is subjected to a uniform shear force along its four edges, some results for the critical
loads were obtained by using the Rayleigh-Ritz method (Lekhnitskii, 1968). In Table 4,
we give the results obtained for the critical load parameter X, defined in (74), of the square
birch plywood plate under different loadings.

As shown in Table 4, the results of the parameter K, obtained by our DBEM, differ
only about 3% from the values calculated by the exact solution {compression, tension) or
the Rayleigh-Ritz method (shear force).

Example 5: Square graphite/epoxy plate with different boundary conditions. Two
problems are treated in this example, concerning a square graphite/epoxy plate subjected
to a uniaxial compression :

—plate clamped along the four edges;
—plate simply-supported along the two opposed edges parallel to y-axis, and clamped
along the two other edges parallel to x-axis.

The uniaxial compression is uniformly distributed along the two opposed plate sides in the
x- and y-axis direction, respectively. The elastic constants of the graphite/epoxy plate have
been given in (71).

We present, in Table 5, the numerical results of the critical load parameter X, defined
in (74), for the graphite/epoxy plate. In the-case of the plate with two simply-supported
and two clamped edges, we have compared our results with those given by the Rayleigh~
Ritz method (Lekhnitskii, 1968).

Example 6: Simply-supported rectangular graphite/epoxy plates under uniaxial com-
pression. This example consists of studying the variations of the critical load N, and of the
deflection mode shapes following the edge length ratios of a rectangular graphite/epoxy
plate simply-supported along its four edges. The fibers of the graphite/epoxy material are
directed in the y-axis direction. The corresponding flexural rigidities of the plate, with
thickness 4 = 0.01 m, are given by:

Table 5. Critical load parameter X, for a graphite/epoxy plate with different boundary
conditions

Loadings DBEM Lekhnitskii Error (%)

Four clamped edges a.#0 481.213 — —
a,#*0 168.161 — -
Twp clamped and two a, #0 163.239 162.017 0.75
simply-supported edges a#0 143.894 141.326 1.82

SAS 26:12-8
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Table 6. Values of K, for simply-supported rectangular graphite/epoxy
plates under uniaxial compression

Ratioc Mode (mxn) DBEM Lekhnitskii Error (%)
0.5 1x1 17.806 17.365 2.54
1.0 2x1 71.358 69.461 273
1.5 Ixl 161.714 156.288 347
2.0 4x1 291.226 277.845 4.82

D||=086218X103Nm D33=015151X105Nm
Di»=024141x10°Nm Dy, = 0.59750 x 10° Nm. (76)

Suppose that the plate is subjected to a uniaxial compression force in the x-axis direction
(a, # 0). The edge length ratio of the rectangular plate is denoted by ¢ = a/b, where a and
b represent respectively the two edge lengths of the rectangular plate.

In Table 6, we compare the results of parameter K,, defined in (74) for the critical
load N, obtained by the proposed method with those calculated from the exact solution
(Lekhnitskii, 1968).

Figure 4 shows the buckling deflection mode shapes of the simply-supported rec-
tangular graphite/epoxy plate with edge ratios ¢ = 0.5, 1.0, 1.5 and 2.0. One observes in
this figure that for ¢ = 0.5, the plate undergoes a unilateral buckling deformation; but for
the edge ratio ¢ = 1.0, 1.5 and 2.0, the graphite/epoxy plate is in a bilateral buckling
deformation under the corresponding critical load N.

6. CONCLUSIONS

The computational examples treated in this paper clearly illustrate the efficiency and
the versatility of the proposed direct boundary element method for the solution of flexural
vibration and buckling problems of orthotropic plates. One of the essential characteristics
of this numerical technique is the fact that the fundamental solution for the bending of
orthotropic plates is employed in the integral formulations of the vibration and the buckling

Fig. 4. Buckling mode shapes (deflection) of simply-supported rectangular graphite/epoxy plates.
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analysis. As the boundary integral equations involve the conventional physical quantities
of Kirchhoff’s theory, all the usual boundary conditions in practice could be easily taken
into account, even the mixed boundary conditions. Moreover, by reason of the treatment
of twisting moment at the corners of the plate boundary, the present method can be
efficiently applied to analyse the vibration or the buckling problem of any orthotropic
plates, whatever their geometric plan forms.

It has been demonstrated that the numerical results obtained using the current direct
BEM are in good agreement with the results available from the analytic solutions or
the Rayleigh-Ritz method for both the calculation of the vibration frequencies and the
determination of the buckling critical loads of orthotropic plates.
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APPENDIX

As indicated in the case of anisotropic plate bending (Shi and Bézine, 1988), the derivatives of the fundamental
solution (33) can be expressed in terms of the corresponding derivatives of the functions R(Q; P) and S(Q; P)
given in (34) and (35), where Q and P are respectively the distribution point and the source point of coordinates
(x, ¥) and (x,. o). In consequence, only the fifth-order derivatives of the functions R(Q: P) and S(Q: P) will
be given in the following.

—Fifth-order derivatives of R(Q; P) withi = 1 and 2:

as
—6}? (x? +y; )’[ ¥+ 3]

OR; —8 3 2 2 3
ax*dy = I+y2)° [—dix?—3exly,+3dx.y} +ey’]

6’R,~ 233 2 2 2 2 3
o o +y2 a5 (e ~d})x} —6diexly, +3(d] —el)x;y7 4+ 2d,e,y}]

a’R,- d? 2 2 2
6x26y m-)—;[d(f&e, d)x}+3eef —3d})xty; +3di{d} —3el)x; y} +e,(3d? —e}) y}}

&R, S
xdy* (TTTF[( —d}+6dlel —el)x} +12d e (e} —dP)xly,+3(d} —6dlel +el)x,y} +Ade (d]} —ef) ¥}

&R,
ay’ (Y—+;3)—3[d( —d} +10de? ~Se!)x} +3e;,(—5d} + 10d}e} —ef)x}ty,;
+3d,(d} — 10d?e? + Sef)x, v} +e,(5d} — 10d e +e) 7).
—Fifth-order derivatives of S{Q; P) withi= 1 and 2:

S, —4
o m[hf,\'i—yi]]

S, -4
o m[—&x?+3d,-x;2y.-+3e,-x.yi2-¢yf3]

555,- -4 2 2 g2y .3

prey (x—;;z—)ﬂ 2diex} +3(d] —e})xly; +6diex,y} + (e} —d}) yi)

6’Sl —4 2 2 2 2 2 2 2 3
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where x; and y, are defined in (36) by the coordinates of the distribution point Q(x, y) and of the source point

P(xo, yo)-
An analogical derivation process can be carried out to obtain the corresponding derivatives of the fundamental
solution (40) in the case of D} = D,,D,,. It should also be noted here that the source point P(x,,y,) in the

integral representation (26) is always situated inside the plate domain €, so there are no third-order singularities
of the boundary integrals in the integral formulation for the buckling analysis, even though the fifth-order
derivatives given above present in such forms.



